Enhancement of the Wear Particle Monitoring Capability of Oil Debris Sensors Using a Maximal Overlap Discrete Wavelet Transform with Optimal Decomposition Depth
نویسندگان
چکیده
Oil debris sensors are effective tools to monitor wear particles in lubricants. For in situ applications, surrounding noise and vibration interferences often distort the oil debris signature of the sensor. Hence extracting oil debris signatures from sensor signals is a challenging task for wear particle monitoring. In this paper we employ the maximal overlap discrete wavelet transform (MODWT) with optimal decomposition depth to enhance the wear particle monitoring capability. The sensor signal is decomposed by the MODWT into different depths for detecting the wear particle existence. To extract the authentic particle signature with minimal distortion, the root mean square deviation of kurtosis value of the segmented signal residue is adopted as a criterion to obtain the optimal decomposition depth for the MODWT. The proposed approach is evaluated using both simulated and experimental wear particles. The results show that the present method can improve the oil debris monitoring capability without structural upgrade requirements.
منابع مشابه
Optimization of Online induction Sensor for Ferrous Metals Particles Identification in Engine Oil
Engine oil is one of most important parameters in internal combustion engine that plays effective role in component wear. One of the ways to optimize the performance of the IC engines is online monitoring of wear particle in engine oil. There are different ways to identifying these particles, most of which are offline. Nowadays online oil monitoring sensors are quickly developed. In this study ...
متن کاملAN INTELLIGENT FAULT DIAGNOSIS APPROACH FOR GEARS AND BEARINGS BASED ON WAVELET TRANSFORM AS A PREPROCESSOR AND ARTIFICIAL NEURAL NETWORKS
In this paper, a fault diagnosis system based on discrete wavelet transform (DWT) and artificial neural networks (ANNs) is designed to diagnose different types of fault in gears and bearings. DWT is an advanced signal-processing technique for fault detection and identification. Five features of wavelet transform RMS, crest factor, kurtosis, standard deviation and skewness of discrete wavelet co...
متن کاملComparative Analysis of Wavelet-based Feature Extraction for Intramuscular EMG Signal Decomposition
Background: Electromyographic (EMG) signal decomposition is the process by which an EMG signal is decomposed into its constituent motor unit potential trains (MUPTs). A major step in EMG decomposition is feature extraction in which each detected motor unit potential (MUP) is represented by a feature vector. As with any other pattern recognition system, feature extraction has a significant impac...
متن کاملPerformance Enhancement of GPS/INS Integrated Navigation System Using Wavelet Based De-noising method
Accuracy of inertial navigation system (INS) is limited by inertial sensors imperfections. Before using inertial sensors signals in the data fusion algorithm, noise removal method should be performed, in which, wavelet decomposition method is used. In this method the raw data is decomposed into high and low frequency data sets. In this study, wavelet multi-level resolution analysis (WMRA) techn...
متن کاملChange Detection in Time Series Using the Maximal Overlap Discrete Wavelet Transform
The problem of change detection of time series with abrupt and smooth changes in the spectral characteristics is addressed. We first review the main characteristics of the discrete wavelet transform and the maximal overlap discrete wavelet transform. An algorithm for sequential change detection in time series is then reported based on the maximal overlap discrete wavelet transform and Bayesian ...
متن کامل